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Abstract

Cardiolipins, a class of mitochondria-specific lipid molecules, is one of the most unusual and

ancient phospholipids found in essentially all living species. Typical of mammalian cells is the

presence of vulnerable to oxidation polyunsaturated fatty acid resides in CL molecules. The

overall role and involvement of cardiolipin oxidation (CLox) products in major intracellular

signaling as well as extracellular inflammatory and immune responses have been established.

However, identification of individual peroxidized molecular species in the context of their ability

to induce specific biological responses has not been yet achieved. This is due, at least in part, to

technological difficulties in detection, identification, structural characterization and quantitation of

CLox associated with their very low abundance and exquisite diversification. This dictates the

need for the development of new methodologies for reliable, sensitive and selective analysis of

both CLox. LC-MS-based oxidative lipidomics with high mass accuracy instrumentation as well

as new software packages are promising in achieving the goals of expedited and reliable analysis

of cardiolipin oxygenated species in biosamples.
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Oxidizable polyunsaturated cardiolipins in eukaryotes

It is commonly accepted that life has originated on Earth ~three billion years ago and one of

the major evolutionary transitions - eukaryogenesis - has occurred over one billion years ago

(Koumandou et al., 2013). Prior to the Cambrian, very few metazoan body or trace fossils

have been identified (Briggs and Fortey, 2005). This paucity of metazoan fossils in the strata

of Earth has been broken by the sudden appearance of highly developed metazoan fossils in

the Cambrian, a pattern referred to as the Cambrian evolutionary “explosion” (Conway

Morris, 2006) about six hundred million years ago (Crawford et al., 2013). While the cause

of this “explosion” still remains incompletely understood (Briggs and Fortey, 2005), one of

the possible explanations is that the oxygen content in the atmosphere became sufficient for

the maintenance of highly diversified aerobic life and its biochemical basis – enzymatic

redox reactions (Crawford and Broadhurst, 2012). Mitochondria became the universal

instrument of life in eukaryotic cells – from protozoan to mammals - as an organelle filled

with machinery capable of oxygen-driven “burning” of different oxidizable substrates in a

coupled enzymatic and electrochemical process involving highly effective transformation of

chemical energy of ATP. In addition to their function as a powerhouse in cells, mitochondria

are currently viewed as the major regulatory platform involved in numerous intra- and

extracellular effects, from coordination of metabolism and cell death to immune responses

whereby phospholipids are considered as important signaling molecules. One of the most

unusual and ancient phospholipids found in essentially all living species are cardiolipins -

(1,3-bis(sn-3′-phosphatidyl)-sn-glycerols) (CLs). Their general structure includes a unique

dimeric phosphatidyl lipid moiety whereby two phosphatidylglycerols are connected via a

glycerol backbone thus adding up to four acyl (fatty acid) chains and two negative charges

of phosphate groups (Figure 1). Of note, this type of molecular organization with >15 fatty

acids available for biosynthesis will lead to a remarkable diversification of CLs with the

total theoretical number of possible isomers in excess of 154. Is this potentially huge

multiplicity of CL molecular species found in nature? CLs are predominantly distributed in

bacterial plasma membranes and in eukaryotic mitochondrial inner membranes. This very

specific confinement of CLs to the mitochondrial inner membranes (IMM) corresponds with

the endosymbiotic theory- according to which mitochondria of eukaryotes evolved from

free-living bacteria that were phagocytosed inside another cell as an endosymbiot (Yang et

al., 1985). In spite of the potentially common evolutionary origin, both CL’s biosynthetic

pathways and molecular speciation are different. In bacteria, CLs are synthesized by CLS

containing two phospholipase D (PLDc_2) domains - CLS_pld, while in eukaryotes, the

reaction is catalyzed by CLS containing one CDP-alcohol phosphatidyltransferase (CAP)

domain - CLS_cap. (Tian et al., 2012). As far as molecular speciation is concerned, bacterial

CLs exhibit shorter carbon chains with mostly saturated or mono-unsaturated fatty acids,

while longer chain polyunsaturated fatty acids are predominant in eukaryotic CLs (Figure 2).

While a popular concept that polyunsaturated lipids can play an important structural role and

they are essential for the maintenance of fluidity of numerous biological membranes.

Although this popular concept has been enthusiastically perceived, even mono-enoic oleic

acid (C18:1) residues are sufficient for keeping membranes fluid enough within the

physiologically relevant ranges of temperatures. It is also known that polyunsaturated fatty
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acids may act as precursors of signaling lipid molecules – lipid mediators – that can be

formed only from polyunsaturated fatty acids through their oxygenation. In this pathway,

different phospholipids with esterified polyunsaturated fatty acid residues undergo

hydrolysis by phospholipase A2 – a rate limiting enzymatic process that releases

polyunsaturated fatty acids for the subsequent oxygenation steps catalyzed by one of several

enzymes such as cyclooxygenases (COX) lipoxygenases (LOX), cytochromes P450 (P450)

(Lukiw et al., 2005). Recently, polyunsaturated fatty acids-residues of CLs have been

considered as a source of oxygenated lipid mediators thus suggesting the presence of highly

diversified polyunsaturated fatty acid-CL species (Schlame et al., 2005). In addition to the

role of CL’s polyunsaturated fatty acids as precursors of lipid mediators, the signaling role

of oxygenated CLs appears to be essential for several physiological processes in particular

apoptosis (Kagan et al., 2005). Accumulation of oxidized CL may act as an apoptotic signal

when the process of elimination of “bad” mitochondria fails (Kagan et al., 2005). We

established that early during apoptosis CL and cytochrome c (cyt c) form a complex with

peroxidase activity that utilizes reactive oxygen species (ROS) to induce oxidation of

polyunsaturated fatty acids CLs in mitochondria (Kagan et al., 2005). Indeed, this event

results in the release of cyt c from mitochondria, activation of caspases 3/7 and

externalization of phosphatidylserine (PS) on the cell surface. Generation of oxygenated

polyunsaturated fatty acids in CLs has been detected in vitro in different cell lines in

response to a variety of apoptotic stimuli (Kriska et al., 2005; Tyurin et al., 2009) as well as

in vivo under acute injury conditions such as brain trauma (Bayir et al., 2007; Ji et al., 2012),

total body irradiation (Tyurina et al., 2008; Tyurina et al., 2011b), hyperoxia (Tyurina et al.,

2010) and exposure to carbon nanotubes (Tyurina et al., 2011a). Such involvement of

peroxidzed CL species – in their direct esterified form or after hydrolysis of CLox species –

in physiological functions and pathogenic mechanisms requires sensitive and reliable

methods for their analysis in mitochondria, cells and tissues.

Lipidomics/Oxidative lipidomics of cardiolipins

During recent years, the major technological innovations that have advanced lipid analysis

were the development of “soft ionization” mass spectrometry (MS) techniques, such as

electrospray ionization (Fenn, 2003) and high mass accuracy orbitrap-based instrumentation

(eg, QExactive type of mass spectrometers with high resolving power (up to 140,000)). As a

result of this, accurate mass detection of complex lipids, their identification and quantitation

with high assurance as well as discrimination of co-eluting isobaric species became possible.

Moreover, a combination of multiple capabilities of these instruments - such as all ion

fragmentation, MS2 analysis in a data dependent mode, inclusion and exclusion of exact m/z

values - makes identification of numerous lipids and their oxidation products achievable.

These technological advancements designated the emergence of two fields of research -

lipidomics and oxidative lipidomics aimed at identification and structural characterization of

lipids and oxidized lipids in model systems, complex mixtures from cells, tissues and

biofluids as well as their physiological role and functions (Kagan et al., 2006; Meikle and

Christopher, 2011; Sparvero et al., 2010). In spite of this remarkable progress in MS-

technologies, analysis of highly diversified and low abundant molecular species of oxidized

lipids still represents significant challenges. There are two major approaches commonly
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used in lipidomics: direct infusion of lipid extracts (“shotgun lipidomics”) (Han et al., 2012;

Schwudke et al., 2011) and separation of complex lipid mixtures by either HPTLC or HPLC

coupled with MS. While shot-gun lipidomics is commonly employed for general

characterization of multiple species of lipids (Han et al., 2012; Schwudke et al., 2011),

detailed analysis of lipid oxidation products is usually based on chromatographic pre-

separation of major lipid classes (Tyurina et al., 2013).

Analysis of oxygenated CL in cells and tissues

Ordinarily, analysis of complex phospholipid mixtures includes consecutive utilization of

either HPTLC (Figure 3a) or normal phase LC for separation of major classes of

phospholipids followed by full-MS and MSn analysis (Figure 3b) of individual components

within these classes. Identification and characterization of the majority of molecular species

of CLs and their hydrolytic metabolites (mono-lyso-CLs and di-lyso-CLs) by using

conventional normal phase LC/MS protocols are relatively straightforward. In contrast,

analysis of CL oxidation products in cells and tissue requires more sophisticated protocols

due to their high diversity (Figure 1), very low content as well as overlapping of numerous

isobaric non-oxidized and oxidized CL species, and isotopic splitting of CL species.

Normally, oxidized CL species are accountable for only a relatively small fraction of total

CLs - less than 0.5 mol%. Given that CLs represent 1–3 mol% of all phospholipids in cells

and tissues (Bayir et al., 2007; Tyurina et al., 2010), it is not surprising that reliable

identification and quantitative assessments of individual oxidized CL (CLox) distributed

among dozens of their molecular species requires specific efforts. One of the effective

techniques of oxidative lipidomics employs two-dimensional LC/MS (2D-LC/MS) and

allows for physical separation of oxidized and non-oxidized CLs species (Kim et al., 2011;

Minkler and Hoppel, 2010; Samhan-Arias et al., 2012). However, the major difficulties in

quantitative analysis of oxygenated CL species by 2D-LC/MS still face up to a large

diversity of oxygenated derivatives and lack of standards for their quantitative assessment.

Direct detection of selected oxygenated molecular species of CLox may be possible under

specific circumstances as it has been demonstrated for human lymphocytes exposed to

rotenone (Fig. 4), in traumatic brain injury (Bayir et al., 2007; Ji et al., 2012), hyperoxic

lung injury (Tyurina et al., 2011b; Tyurina et al., 2010).

Lipid peroxidation occurs mainly in a few types of fatty acid residues esterified into

phospholipids (Kagan, 1988), ie long-chain polyunsaturated fatty acids with two and more

double bonds - C18:2, C18:3, C20:3, C20:4, C20:5, C22:5 and C22:6. Combinatorial

numbers of possible peroxidized species of CLox - with one or more out of four fatty acid

residues containing from one to over 8–10 oxygens which are commonly presented by

hydroxy-, hydroperoxy-, epoxy-, and oxo-functionalities (Figure 1) – may be very high. The

formation of a wide number of oxygenated species with differences in their structures makes

the detection and identification of each CLox molecular species more difficult. This huge

diversification of CLox species can be significantly reduced by enzymatic hydrolysis of

oxidized CLs by a mixture of phospholipases A1 plus A2 to yield a limited number of

readily identifiable hydrolysis products – oxygenated and non-oxygenated fatty acids and

lyso-CLs. This, along with the commercial availability of standards for most of oxygenated

fatty acids, makes detection of oxidatively modified CL feasible. It is therefore frequently
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advisable to begin analysis of CL peroxidation from this simplified protocol (Tyurina et al.,

2013). A mixture of commercially available phospholipases A - phospholipase A1,

(Thermomycescandidae) plus porcine pancreatic phospholipase A2 – in relatively high

concentrations are effective in catalyzing the hydrolysis of CLs and CLox at sn-1 and sn-2

positions, respectively (Buckland et al., 1998; Pete and Exton, 1995). One of the

complications of this protocol is still associated with high abundance of non-oxygenated

fatty acids vs orders of magnitude lower concentrations of oxygenated fatty acids. This can

be avoided by a more selective liberation of oxygenated fatty acids from CLox using low-

density lipoprotein-associated phospholipase A2 (LpPLA2VIIA or PAF-Acetylhydrolase)

(Davis et al., 2008; Tyurin et al., 2012). While in major classes of phospholipids, oxidizable

polyunsaturated fatty acids occupy predominantly the sn-2 position, in CLs they can be

located in both the sn-1 and sn-2 positions. Therefore, enzymatic treatment of oxidized CL

can yield a mixture of oxygenated and non-oxygenated fatty acids as well as oxygenated and

non-oxygenated mono-lyso-CL. MSn analysis with collision induced dissociation (CID)

technique (also called collisionally activated decomposition (CAD)) is a common method of

fragmentation. MSn is sufficient for identification and characterization of hydrolyzed fatty

acid residues. Analysis of CLox molecular species and mono-lyso-CLs can be also achieved

by MSn but in the ion trap mass spectrometer, full characterization could be compromised

due to a low mass cut off at 28% of the precursor m/z. This limitation can be overcome and

the structure of CLox and mono-lyso-CLs can be confirmed by employing pulsed-Q

dissociation technique (PQD) that allows for analysis of low molecular weight fragment ions

with no low mass cut off. Coupling of enzymatic hydrolysis of CLs and CLox with MSn

analysis provides: i) complete and accurate characterization of the molecular structure of

oxygenated fatty acids, ii) valuable information on positional distribution (sn-1 or sn-2) of

oxidized epitopes in phospholipids and iii) quantitative assessments of CLox species

(Tyurina et al., 2013). Further, Lp-PLA2-based oxidative epitope targeted enzymatic

digestion of CLox is a promising protocol for simplified detection and characterization of

stereo-specificity of oxygenated fatty acid residues in CLox – that may be useful in the

overall workflow of CLox analysis in cells and tissues (Figure 5).

Oxidized phospholipids have been identified as important signals in several pathological

conditions (da Silva et al., 2012; Greig et al., 2012; Thomas and O’Donnell, 2012), thus

necessitating detailed studies of tissue-, cell- and organelle-specific biomarkers of

phospholipid oxidation. Notably, changes in the CL content, composition (Chicco and

Sparagna, 2007; Lesnefsky and Hoppel, 2008; Paradies et al., 1993) as well as its oxidation

levels (Ferreira et al., 2013; Paradies et al., 2009; Tyurina et al., 2013), have been associated

with mitochondrial dysfunction potentially pointing to their role as informative biomarkers.

For example, using enzymatic digestion of CLs and CLox followed by MS analysis, we

were able to identify, characterize and quantitatively assess major oxygenated molecular

species of CL in dysfunctional mitochondria from human lymphocytes exposed to rotenone

(Figure 6a). Linoleic acid, located in both sn-1 and sn-2 positions of CL, was the major

oxidation substrate for rotenone-triggered mechanisms in lymphocytes (Figure 6b) whereby

hydroxy- and hydroperoxy-functionalities represented the major oxidative modifications

(Tyurina et al., 2013). Unexpectedly, oxygenated products were detected predominantly in

C18:2 acyls of CLs in injured brain (Figure 7) and lung in spite of the presence of C20:4 and
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C22:6 polyunsaturated residues known to be “more oxidizable” (Tyurina et al., 2011a;

Tyurina et al., 2010). The mechanisms of this unusual specificity towards C18:2 species of

CLs remain to be elucidated; however a priori they may be dissociated from random non-

enzymatic free radical pathways.

CL oxidation in model systems

Model systems are widely used to mimic complex cell environments. Information and

pattern of structural modification of particular compounds obtained in simple models give us

a clue to possible mechanisms and pathways involved. The MS analytical strategies are

based on the assignment of specific fragmentation fingerprints of each CLox molecule. This

methodology helps to predict and verify the pathways of CL oxidative modifications, which

might be subsequently searched in in vivo systems using a lipidomic approach. The

detection of the oxidation products in biological samples requires a point targeted lipidomic

analysis that can be performed by quantification of specific modified phospholipids using

both single and multiple reaction monitoring (SRM and MRM) protocols. The design of

such protocols requires preliminary unambiguous identification of accurate masses and

types of product ions for each modified phospholipid species. Although these protocols have

not been commonly applied to CLox analysis they are widely used for quantification of

other phospholipids and their oxygenated species (O’Donnell, 2011).

In particular, questions related to apparent specificity of CL peroxidation can be tested in

simple model chemical or biochemical systems. As has been noted above, the non-random

character of CL oxidation is one of its most prominent features detectable in vivo and in cell

cultures suggesting the involvement of enzymatic catalytic pathways. Several studies

indicate that TLCL oxidation in model systems is also non-random. While the TLCL

molecule is symmetric and has four equivalent C18:2 fatty acyl chains, their oxidation

catalyzed by oxygen radicals and singlet oxygen displayed specificity. In multi-oxygenated

TLCLox species with over 4–8 oxygen atoms, there are fatty acid residues with two

hydroperoxy-groups while the other acyls in the same molecule remain non-oxidized (Kim

et al., 2011; Kim et al., 2010; Maciel et al., 2011b). While numerous in vitro studies have

implicated transition metals and their complexes as well as metalloproteins (particularly

hemoproteins) as potential catalysts of CL peroxidation (Kim et al., 2011; Losito et al.,

2011; Maciel et al., 2011a) their role in mitochondrial enzymatic CL oxidative metabolism

in vivo remains ambiguous (Belikova et al., 2006; Kagan et al., 2005; Kapralov et al., 2007;

Kapralov et al., 2011). In a series of studies, similarity between cyt c-catalyzed peroxidation

of CLs in model biochemical systems and in cyt c+/+ mouse embryonic cells has been

documented (Belikova et al., 2006; Kagan et al., 2005; Kapralov et al., 2007; Kapralov et

al., 2011). Notably, the cells lacking cyt c were incapable of catalyzing accumulation of

CLox and also displayed resistance to pro-apoptotic stimuli (Kagan et al., 2005)

Importantly, accumulation of the same types of CL oxidation products have been established

in mitochondria of acutely damaged tissues – brain, lung, small intestine – associated with

massive apoptotic cell death (Bayir et al., 2007; Ji et al., 2012; Tyurina et al., 2008; Tyurina

et al., 2011b; Tyurina et al., 2010). Based on this, a peroxidase model of cyt c/CL complexes

with a competence and selectivity towards CL peroxidation has been proposed (Kagan et al.,

2005). It is possible that transmembrane redistribution and externalization of CLs on the
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mitochondrial surface during mitophagy and apoptosis (Chu et al., 2013; Kagan et al., 2005)

may create conditions for CL interactions with other tentative catalysts, whose identity is yet

to be ascertained.

Outlook and perspectives

Lipidomics has repeatedly conquered frontier positions among other omics approaches,

particularly metabolomics (German et al., 2007; Griffiths et al., 2011; Hu et al., 2009).

However, this triumph of lipidomics has been substantially more modest for a highly

diversified group of mitochondrial phospholipids - CLs, and particularly CLox. The major

reasons for this are very low abundance and exquisite diversification of CL molecular

species leading to overwhelming difficulties in their detection, identification, structural

characterization and quantitation. In spite of this, optimistic prognosis can be made with

regards to future studies of CLs and CLox. This is mainly due to the emerging discoveries

and growing understanding of their roles in major intracellular signaling (mitophagy,

apoptosis) (Atkinson et al., 2011; Chu et al., 2013; Kagan et al., 2009) as well as

extracellular inflammatory and immune responses. This dictates the need for the

development of new methodologies for reliable, sensitive and selective analysis of CLs and

CLox. With this in mind, new generations of high mass accuracy instrumentation along with

the newly developed software packages for the identification (eg, LipidSearch) and

quantification (TracerFinder) of MS data are very promising in achieving the goals of

expedited and reliable analysis of CLs and, most importantly, CLox in biosamples.
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• Oxidizable polyunsaturated cardiolipins in eukaryotes

• Lipidomics/Oxidative lipidomics of cardiolipins

• Analysis of oxygenated CL in cells and tissues

• CL oxidation in model systems
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Figure 1.
Structure and oxidation products of CL. Left panel: Structural formula of a prototypical CL

with four different fatty acid residues: sn-1-monounsaturated oleic acid (C18:1), and

polyunsaturated sn-2-arachidonic acid (C20:4), sn-2′-docosahexaenoic acid (C22:6) and

sn-1′-linoleic acid (C18:2). Right panel - major oxygen-containing functionalities in oxidized

CL (CLox) exemplified by oxidation of C18:2 residues.
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Figure 2.
Mass spectra of caldiolipins isolated from E. coli (red) and mouse brain (blue).
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Figure 3.
MS analysis of cardiolipin isolated from mouse lung.

a). 2D-HPTLC of phospholipids isolated from mouse lung. CL spot was scraped, extracted

and subjected to MS analysis by direct infusion. Full scan ESI-MS analysis in negative

mode was employed for CL. b). Detection and identification of CL by LC/MS. Typical LC

base profile (bottom) and full mass spectrum of CL (top left). MS2 spectrum of CL

molecular species with m/z 1473.9 (top right). LXQ Ion trap mass spectrometer (Thermo-

Fisher, San Jose, CA) was employed. NL, neutral lipids, CL, cardiolipin; PE,
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phosphatidylethanolamine; PC, phosphatidylcholine; PS, phosphatidylserine; PI,

phosphatidylinositol; SM, sphingomyelin; FFA, free fatty acids
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Figure 4.
2D-LC/MS detection of CL oxygenated molecular species in human lymphocytes after

rotenone exposure. Typical 2D-HPLC profile and MS spectra of CL (blue) and oxidized CL

(red) after treatment of lymphocytes with 250 μM rotenone (18h). CL was isolated by

normal phase LC/MS analysis. The CL fraction was then subjected to reverse phase LC/MS

analysis (shown here) using a C8 column (4.6 mm × 15 cm). CL and CL-ox were separated

using an isocratic solvent system consisting of propanol:water:triethylamine:acetic acid

(450:50:2.5:2.5) at a flow rate of 0.4ml/min. Under these conditions, CL-ox eluted prior to

CL. Molecular species of CL containing C18:2-OH (m/z 1464), C18:2-OOH or C18:2-(di-OH)

(m/z 1480) from CL parent ion with m/z 1448 and C18:2-OOH or C18:2-(di-OH) (m/z 1502)

from CL parent ion with m/z 1470 were detected in the samples. Molecular species of CL

were identified based on m/z ratios.
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Figure 5.
Flow-chart for complete identification of oxidatively modifies species of cardiolipins in cells

and tissues.
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Figure 6.
Detection and identification of CL oxygenated molecular species formed in human

lymphocytes exposed to rotenone by using enzymatic approach coupled with MS analysis.

a.) Quantitative assessment of oxygenated molecular species of CL in rotenone treated

lymphocytes. Molecular species of CL containing oxygenated linoleic acid such as C18:2-

OH (m/z 1464), C18:2-OOH (m/z 1480), C18:2-OOH/C18:2-OH (m/z 1496) were detected.

Data are presented as pmol of CLox/nmol of CL. b). Rotenone-induced oxidation of linoleic

acid in CL molecule. CL was separated by 2D-HPLC, hydrolyzed either with phospholipase

A1 or phospholipase A2 and liberated fatty acids were analyzed by LC/MS. c). Oxygenated
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species of C18:2 formed in lymphocytes exposed to rotenone (250 μM). Data are mean ±

S.D., n=5, *p<0.05 vs non-treated lymphocytes.
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Figure 7.
Quantitative assessment of oxygenated molecular species of C18:2 liberated by a mixture of

phospholipase A1 and A2 from phospholipids isolated from brains of naïve rats and rats after

cardiac arrest (ACA). Sprague Dawley PND 17 male rats underwent asphyxial cardiac arrest

(ACA) as previously described (Fink et al., 2004)(Fink et al., 2004). Animals were

sacrificed at 24 h after resuscitation. Brains were removed and stored at −80 °C until use. To

identify oxidized fatty acid (FAox), CLs were isolated from total lipids by normal phase

LC/MS and treated with phospholipase A1 from Thermomyces lanuginosus (10 μl/μmol CL)

and phospholipase A2 from porcine pancreatic (10U/μmol of CL) as described (Tyurina et

al., 2013). Liberated FAox were extracted by Folch procedure and analyzed by reverse phase

(C18 column) LC/MS as described before (Tyurina et al., 2011). This study was approved

by the institutional Animal Care and Use Committee at the University of Pittsburgh. Data

are presented as pmol of FAox/mg protein. N=4. HODE – hydroxy-species of C18:2;

EpOME- epoxy-species of C18:2; HODE/EpOME- species of C18:2 containing both epoxy

and hydroxyl-groups; diHODE - di-hydroxy-species of C18:2.
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